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1. Introduction 

Of all the analogies that can be used to represent real-time human-machine interaction and control 
in closed loop systems, the idea of the human operator as an error-nulling device has been given 
the most attention (see Rouse, 1986; Vicente & Rasmussen, 1992; Rasmussen, 1988).  It is often 
referred to as the servo-mechanism analogy and defines the cybernetic paradigm developed by 
Norbert Wiener (1948).  Here, an operator interacts with a system and adjusts control behavior on 
the basis of error characteristics contained in system responses to control operations.  This analogy 
can be applied to most any problem where an operator can change system functioning through 
operations performed on its parameters.  In addition, it presents a unique framework for under-
standing a special complexity affecting awareness and control in some operational environments.  
For example, how does one maintain calibrated decision rules learned while performing an 
unreliable and uncertain task when these rules must be executed in the absence of decision 
feedback?  That is, can we create an interface that provides information to facilitate error-nulling 
goals during conditions when the fidelity of system measurements is in flux, along with an 
absence of information pertaining to actual system outcomes?  

1.1 Threats to Decision Accuracy:  Feedback Loops and Uncertainty 

There appears little doubt today that the quality of complex decision making is directly related to 
the nature of feedback loops that are used by a decision maker to alter decision strategies in order 
to maintain decision accuracy.  Feedback about decision outcomes helps maintain properly cali-
brated decision rules, particularly in uncertain decision domains (Balzer, Doherty, & O’Connor, 
1989; Brehmer, 1974, 1978; Kahneman & Tversky, 1973; Tversky & Kahneman, 1974).  In 
addition, feedback reduces the “out-of-the-loop” performance problem that leads to operator 
failure at problem detection and control, which occurs when operators lose their ability to under-
stand the relationship among system parameters and optimal decision behavior in automated work 
environments (Moray, 1986; Wickens, 1992; Edwards & Less, 1974).  

However, an issue for developing decision support techniques for real-time operational decision 
tasks is related to the fact that many systems cannot provide timely feedback to the decision maker 
about the quality of their decision making.  Furthermore, within most real-world judgment tasks, 
information about the criterion is often delayed, absent, or unusable (Hammond, 1996).  For 
example, some decision domains are limited to simple dichotomous outcomes (e.g., correct/ 
incorrect), which often do not assist the decision maker in understanding the relation between 
outcomes and decision information.  Simple outcome feedback does not provide sufficient detail 
for the operator to understand the complex and probabilistic relationship between information 
sources and decision criteria.  Variability in criteria as a function of particular decision informa-
tion arrays and the fact that identical arrays can give rise to different criterion values makes it 



 

2 

difficult to discover causal relations.  This fact underscores why relying on outcome feedback 
alone to train people to perform probabilistic decision tasks can be ineffective (see Hammond, 
1996, for detailed review).  Finally, the absence of usable decision feedback is particularly 
problematic for tasks defined by (a) numerous information sources, (b) dynamic environments, 
(c) time pressure constraints on executing judgment policies, and (d) tasks associated with high 
levels of fatigue and stress (for a review of unique factors related to complexity in decision 
making, see Endsley & Kiris, 1995; Klein, Orasanu, Calderwood, & Zsambok, 1993; Mahan, 
1994; Dunwoody, Marino, Mahan, & Haarbauer, 2000; Marino & Mahan, in press; Orasanu & 
Salas, 1993; Parasuraman, Molloy, & Singh, 1993; Wickens, 1992; Zsambok & Klein, 1997).  

1.2 Probabilistic Character of Operational Systems 

In many natural decision environments, decision makers are faced with the task of assimilating 
information sources of limited or changing fidelity.  In the present case, reliability refers to the 
consistency of indicator source variables used to measure system states (Woods, 1988; Rasmussen, 
1988; Stewart, 2001).  These indicators can refer to the instruments, observations, algorithms, 
automation, and actual display systems that are used to measure and represent system information 
(Stewart & Lusk, 1994; Parasuraman, Molloy, & Singh, 1993; Vicente & Rasmussen, 1992; 
Wickens, Gempler, & Morphew, 2000).  For example, the control and management of unmanned 
aerial vehicles (UAVs) can be enhanced by automation (Dixon & Wickens, 2004a), but they can 
be degraded when the automated control is unreliable (Dixon & Wickens, 2004b).  Further, in 
tactical undersea systems, the water’s salinity, depth, and temperature can systematically influence 
the reliability of hydrophones and other sensing devices that are used to support judgments of 
target acquisition and prosecution (Kirschenbaum & Arruda, 1994).  In tele-robotic systems, the 
reliability of remotely located sensors can have serious effects on supervisory control (Sheridan, 
1976; Massimino & Sheridan, 1994; Sheridan, 1992; Wiener, 1988).  Similarly, in many command 
and control operations, it is the reliability of information that often poses the most difficulty for 
command-level decision making (U.S. Army Training and Doctrine Command, 1989).  This is 
particularly true in team-based decision making where a team leader is responsible for assessing 
the reliability and validity of judgments made by subordinate experts who provide judgments of 
system criteria for the team leader to process.  Here, effective team functioning is thought to be 
associated with the team leader’s ability to manifest dyadic sensitivity or the ability to remove bias 
from subordinate judgments when a team-based decision is being made (Hollenbeck, Ilgen, Sego, 
& Hedlund, 1995; Williams & Mahan, in press).  Knowledge of changes in the reliability of 
system measurements (whether they originate from sensing equipment, human experts, or 
automated decision support systems) may assist in the diagnostic use of available information, 
particularly in the absence of timely and usable decision feedback about the quality of decisions. 
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1.3 Feed-Forward Support 

The concept of feed-forward support refers to the technique of providing useful decision 
information in advance of decision actions.  In contrast to feedback, which provides information 
about the consequences of a decision action, feed forward informs the decision maker about 
information properties that theoretically can be used to aid the decision process.  For example, 
the concept of applying cognitive feedback to train decision makers to perform probabilistic 
judgment tasks is largely based on a feed-forward mechanism that is geared to the probabilistic 
nature of the task system (see Hammond, McClelland, & Mumpower, 1981; Balzer, Doherty, & 
O’Connor, 1989; Brehmer & Joyce, 1988).  Cognitive feedback is used to help explicate a 
decision maker’s organizing principle when s/he is processing information.  The underlying goal 
is to increase one’s awareness and control over the properties of an implicit judgment policy by 
making the policy’s features more explicit to the decision maker (see Hammond, McClelland, & 
Mumpower, 1981; Hammond, 1987; Hammond, 1996).  Awareness and control over implicit 
decision rules used by decision makers is often enhanced by having decision makers describe 
and communicate how they plan to make their decisions.  This form of support is typically 
delivered via verbal, numerical, and graphical summaries of task properties, task goals, and the 
decision maker’s judgment policies in order to improve future decision making (Brehmer & 
Joyce, 1988). 

1.4 Icons as Feed-Forward Information Mechanisms 

The concept of encoding information in the form of an iconic representations means that 
theoretically, one can minimize the effort or workload necessary to assimilate the information 
and yet simultaneously increase the number of information channels or sources that can be 
processed by the operator.  The former goal is achieved when perceptual processing mechanisms 
are employed, while the latter is achieved through careful system value mappings to multi-
dimensional iconic forms.  The concept of an icon display is efficient in its simplicity within the 
practical limits, such as portability, operational requirements, amount and tempo of information 
flow, and the finite cognitive resources of the user.  Further, icons can be engineered to support 
different cognitive mechanisms that are needed for different decision tasks.  Here, modifying 
icons in order to induce specific types of cognitive organizing principles means that designers 
can efficiently create representations that are congruent with the dynamically changing 
properties of a task or decision environment. 

Experimental work is needed to ascertain how iconic instantiations may facilitate or obstruct the 
performance of probabilistic decision tasks.  Most icon studies, although illuminating, tend to 
rely on subjective assessments of preference.  Yet, the problem with preference studies is the 
absence of cumulative data describing common principles that can support icon design.  
Although preference data are useful, performance data are necessary to identify generalizable 
principles.   
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1.5 Visual Icons 

Within the visual modality, icons can be engineered to form objects that can encode multiple 
information dimensions that can be parsed perceptually instead of analytically.  The results of 
numerous studies support the use of object-like displays for enhancing a user’s ability to 
assimilate complex information (Carswell & Wickens, 1987; Coury, Boulette, & Smith, 1989; 
Wickens & Andre, 1990).  Some of this interest has focused on using the configural properties of 
object displays to support perceptual operations on analog information.  In configural displays, a 
mapping is created so that the elemental properties of an object combine to produce an emergent 
feature that is representative of the integration of the elemental components.  Perceptual 
processing appears to be most useful in information integration tasks when objects configure to 
produce salient emergent features (Garner, 1981; Pomerantz, 1981; Pomerantz & Pristach, 1989).  
Wickens and Carswell (1995) identify numerous approaches for manipulating information codes 
that enhance the salience of emergent features resulting from the display of multi-dimensional 
information arrays.  For example, they show how various proximity manipulations such as code 
homogeneity, spatial proximity, and attribute similarity can increase the salience of emergent 
features, thus facilitating the perceptual processing of information.  Perceptual processing is 
distinguished from analytical processing in the sense that information integration is more intuitive 
and recognition based than an intellectual exercise that requires more deliberation. 

In addition to being a rapid form of processing, perceptual operations require much less effort 
than analytical decomposition (Wickens & Carswell, 1995).  Reliance on perceptual processing 
tends to generate parallel-based intuitive (or holistic) forms of cognition, which, although less 
precise than analysis, are very robust and easy to apply (see Garner, 1974; Hammond, Hamm, 
Grassia, & Pearson, 1987; Hammond, 1996; Simon, 1990; Anderson, 1991; Tversky & 
Kahneman, 1983).  Intuitive cognition tends to match well with the demands of many naturally 
occurring judgment tasks (Cannon-Bowers, Salas & Pruitt, 1996; Hammond, 1993, 1996). 

1.6 Real-Time Decision Protocols 

Trade-offs often exist between robust approximating strategies and those decision strategies 
geared toward analysis (see Simon, 1978, 1990; Hammond, 1993, 1996).  These trade-offs are 
typically associated with the resources available to the user at the moment a decision is required 
and the immediate demands of the decision task.  For example, some tasks require precise and 
meticulous analyses of information and are not typically suited for real-time human information 
processing.  Analysis supports the goal of precision but at a cost of fragility; one small error 
renders the process imprecise.  However, other tasks require the application of rapid and robust 
decision strategies that are less susceptible to failure.  Here, importance is placed on a rapid and 
robust process where precision is viewed as being less critical to decision outcomes.   

The question in the present study is whether the perceptual properties of iconic formats can assist 
an operator during situations of varying levels of uncertainty.  That is, can we use perceptual 
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organizing principles to facilitate diagnostic assessments of decision information before the act 
of decision making occurs?  Specifically, we propose that iconic representation of information 
reliability will be particularly helpful when information fidelity is low or unknown.  For 
example, medium to low information fidelity conditions should favor the representation of feed-
forward information in iconic forms because diagnosticity will be a joint product of the informa-
tion itself (i.e., magnitude) and information reliability.  Further, the cognitive response to the 
configural representation should be rapid because the iconic representation induces an intuitive 
response in the decision maker.  In contrast, highly reliable information sources may be best 
served with feed-forward formats that separate reliability from magnitude.  In high reliability 
conditions, reliability and magnitude are less dependent than during medium and low reliability 
conditions.  Thus, separating information about reliability from information about magnitude 
may promote analytical decomposition and induce users to produce high precision calculated 
judgments.  Analysis would thus provide greater precision in judgment performance than 
inducing a deliberate computational response in the decision maker that requires more time to 
execute.  
 

2. Method 

The task in this study required the integration of four relatively independent information sources.  
Each source had two variable information elements:  cue magnitude and reliability.  The focus of 
this study was to examine the effects of cue-level iconic manipulations of reliability on multi-cue 
judgment performance.  

2.1 Participants 

Thirty-five student participants were paid volunteers for this study; 65% were female.  Participants 
ranged in age from 22 to 26 years with a mean age of 24.3 years.  None had knowledge of the 
experiment before the briefing that they received from the experimenter.  The participants were 
paid $75.00 for their participation and received course credit.  

2.2 Design 

Several estimated regression parameters, as well as a response rate measure (time/unit judgment) 
were used as indices of performance and are discussed in detail next.  Three levels (high-R, 
medium-R, and low-R) of the within-subject independent variable information reliability were 
crossed with four levels (numeric, graphic, animated, and no information) of the within-subjects 
independent variable iconic reliability presentation format.  A factorial 3 x 4 repeated measures 
analysis of variance (ANOVA) design was used as the analytical framework with the regression 
values and rate measure as dependent variables.  The pure repeated measures design was selected 
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because it offered an approach for mitigating the large error terms found in many judgment 
studies (see Brehmer & Joyce, 1988).  

2.3 Apparatus and Measures 

2.3.1 Data Acquisition Environment 

A Dell1 computer was used for stimulus presentation and data collection.  All training and experi-
mental sessions took place in the Applied Psychology Simulation Laboratory at the Department of 
Psychology, University of Georgia.  The laboratory environment was free of all time cues in order 
to minimize a possible response distortion because of participant anticipation of the rest breaks that 
were given during the study.  

2.3.2 Judgment Task Simulation 

The judgment task required participants to integrate information from four sources in making a set 
of estimates on the time in minutes required to navigate a dismounted Army platoon over terrain to 
a linking point with other platoons.  Task sources were identified with Army land navigation 
scenarios (see U.S. Army Training and Doctrine Command, 1989) and included terrain, the need 
for stealth, concealment, and visibility.  Participants formed their judgments in three information 
reliability conditions and across four iconic reliability feed-forward presentation formats.  Cues for 
the judgment task were randomly generated from a hypothetical infantry land navigation task.  
Randomly generating the cues simplified the judgment task by producing orthogonal information 
dimensions and was germane to the developmental nature of the research.  The selection of cue 
sources was based on the representation of relatively distinct variables affecting land navigation. 

2.4 Fidelity Manipulation 

We altered the fidelity of the navigation task partly by changing the reliability of navigation cues 
used to represent true navigation values.  Because cue reliability is necessary in order to demon-
strate fidelity in the representation of internal system parameters, the fidelity of the information 
acquisition process defines a relation between the objective system values available for measure-
ment and the actual indicator values that are presented to an operator for assessment.  Differences 
between objective and displayed system values reflect differences in the fidelity in which 
information acquisition occurs.  Finally, unreliability in the information acquisition process has 
been shown to impair the quality of operator judgments of system states (Stewart, 2001; Cooksey, 
1996; Wickens, Gempler, & Morphew, 2000). 

2.4.1 Task Criterion 

A task was constructed that produced a true value (Y) for the criterion variable navigation time 
that was expressed in “minutes to link up”.  Task elements were taken from reports of actual 
                                                 

1Dell is a trademark of Dell, Inc. 
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military navigation training tasks (U.S. Army Training and Doctrine Command, 1989).  Pilot 
experimentation was necessary to configure a task system that participants were able to master.  
The mathematical function defining the criterion task system (criterion model) that was selected 
through a series of pilot studies is described in the following equation:  

 Y’ = 100 + 10(.65(r1)) X1 + 10(.44(r2)) X2 + 10(.25(r3)) X3 + 10(-.55(r4)) X4 (1) 

in which r is the cue reliability coefficient and X1 is the terrain value; X2 is the stealth value; X3 
is the concealment value; and X4 was the visibility cue value.  In computing the true values for 
the criterion variable, we used a set of fixed ecological weights which are shown in equation 1.  
Finally, the constant values of 100 and 10 in equation 1 simply ensured that an adequate range in 
Y values would be generated.  

2.4.2 Altering Information Fidelity 

Differential cue diagnosticity was a function of the product of reliability values, fixed ecological 
weights, and cue magnitudes.  We changed cue reliabilities by randomly selecting r-values in a 
specific interval from a uniform probability distribution.  Altering the distribution interval changed 
the range of the reliabilities and thus, the average diagnostic value of a given cue source.  For 
example, randomly selecting r-values from the interval {0.7 to 1.0} would produce cues with 
higher average validities than selecting r-values from the interval {0.3 to 1.0}.  The reliability 
factor in this experiment thus reflected three reliability configurations that were generated with the 
two distribution intervals for the reliability (r) parameter.  The aim of this factor was to determine 
the psychological impact of variance in the statistical reliability of cue information in relation to 
the judgment performance metrics. 

The method selected for varying the reliabilities of individual cues produced distinct changes in 
the fidelity and overall predictability of navigation time when criterion values and cues were 
subjected to linear regression.   

In the high reliability condition (high-R), all cues had (r) values sampled from the 0.7-to-1.0 
interval and were on average equally reliable.  When the true criterion values from the high-R task 
model were regressed on the cue values from a set of 40 trials, the squared multiple correlation 
between cue values and true criterion values was approximately 0.88 and the cues accounted for 
about 88% of the variance in the criterion values.  This squared multiple correlation was taken to 
represent environmental predictability (i.e., maximum task validity).   

In the medium reliability condition (med-R), the terrain cue was less diagnostic on average than 
in high-R because of its (r) value being sampled from the larger reliability interval (0.3 to 1.0).  
The other cue reliabilities remained the same as in the high-R condition.  Thus, in the med-R 
condition, terrain was not as dependable a cue.  In this case, task validity was approximately 
0.77.   
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Within the low reliability condition (low-R), both terrain and stealth cues had the larger reliability 
variance interval found in the 0.3-to-1.0 interval.  The remaining cues retained the original high-R 
reliabilities (0.7 to 1.0) interval.  Task validity in low-R was approximately 0.62.  Figure 2 illus-
trates the representation of the task, showing ecological validities (re) along with the reliability 
coefficients (rtd) between true cue values (T1,2,3,4) and displayed values (D1,2,3,4). 

The manipulation of reliability altered the criterion model through the product of cue validity and 
reliability.  The criteria reflected the influence of the average reliability value sampled from 
reliability distributions.  Therefore, 

 Y’ = 100 + 10(.65(r1)) X1 + 10(.44(r2)) X2 + 10(.25(r3)) X3 + 10(-.55(r4)) X4 (2) 
became 
 HighR-Y’ = 100 + 10(.55) X1 + 10(.37) X2 + 10(.21) X3 + 10(-.47) X4 (3) 
 MedR-Y’ = 100 + 10(.42) X1 + 10(.37) X2 + 10(.21) X3 + 10(-.47) X4 (4) 

 LowR-Y’ = 100 + 10(.42) X1 + 10(.29) X2 + 10(.21) X3 + 10(-.47) X4 (5) 

The criteria reflect reliability modifications of the particular criterion terms. 

2.5 Iconic Display Protocol 

2.5.1 Displaying Cue Magnitude 

Several distinct two-dimensional iconic geometric forms were selected for cue magnitude 
representation, which provided a reasonable discrimination among cues (Bailey, 1982, 1989).  
The iconic cue values were scaled from 1 to 10, where 1 was a small magnitude value and 10 
was a large value and then mapped to the judgment interface display as follows:  terrain 
complexity was displayed as a solid black square, stealth level was displayed as a solid black 
triangle, concealment level was displayed as a solid black ellipse with a horizontal major axis, 
and visibility was displayed as a solid black circle.  The icon image forms were paired with cue 
constructs in an arbitrary manner.  The geometric area of the cue images communicated the 
magnitude of the cues.  The terrain, stealth, and concealment cues were all positively and 
independently correlated with the criterion “navigation link-up time” where 1 = very low (simple 
terrain, low stealth activity, low concealment activity), produced short duration link-up times, 
while 10 = very high (complex terrain, high stealth, high concealment) produced long duration 
link-up times.  The visibility cue was independently and necessarily inversely related to the 
criterion where 1 = very low visibility produced long duration link-up times, and 10 = very high 
visibility produced shorter duration times.  The scaling used ensured that cues presented to 
subjects corresponded to realistic magnitude values that one might encounter in an actual 
navigation task (see Gentner & Stevens, 1983, about discussions of veridical representation). 
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2.5.2 Displaying Reliability Information 

Cue reliability information was described to the participants as representing the amount of noise in 
the data.  The choice was made to present this information as a noise concept because pilot research 
showed that participants appeared to understand the notion of noise better than statistical reliability 
or statistical error.  Thus, the information displays incorporated the complement of reliability (i.e., 
unreliability), which was presented as degrees of “noise” values.  Here, the participants were told 
that noise reduced the diagnostic value of cue information.  Further, the larger the noise values, the 
less reliable the cue, and thus the less diagnostic the cue was of navigation link-up time.  Finally, 
the participants were told that the object of the task was to discount noisy information in judgments 
while increasing the weight of information that was not noisy.  

Feed-forward reliability of the cues was presented to the participants in four ways:  

• (1) Numeric.  The unreliability (noise) value was converted into a complementary numeric 
percentage of a random r-value from a particular reliability condition (e.g., high-R, med-R, 
low-R) and displayed below each graphically presented cue magnitude value where it 
indicated its noise level.  For example, in a given judgment trial within the high-R condition, 
(a) four random r-values were selected from their respective reliability intervals (e.g., 0.7 to 
1.0), (b) the complements of those four values were taken (i.e., 1-r values), and (c) these 
values were multiplied by 100 and expressed as a percentage noise score.  Thus, in the high-
R condition where all reliability values were randomly selected from the 0.7-to-1.0 interval, 
it was the percentage complement to reliability that ranged from 30% to 0% noise that was 
displayed under each graphically presented cue magnitude.  

• (2) Graphic.  The graphically displayed cues were superimposed over a gray background 
image of corresponding cue geometry.  In this case, noise values were mapped to the 
judgment display as a difference in areas between an outer image (noise) and an inner cue 
image (magnitude).  When a cue was perfectly reliable, there was no background image 
(i.e., the difference in areas = 0).  The larger the outer image in relation to the inner image, 
the greater the noise associated with the cue.  

• (3) Animated Icon.  Cues in this format pulsed at a frequency of 3 Hz.  The amplitude of the 
pulse (i.e., the difference between two image area values presented as an animation) indexed 
the amount of noise in the cue.  Here, the larger the pulse amplitude, the less reliable the cue.  
Thus, the animated display presented the unreliability information compared to a graphically 
packaged animation envelope.  Here, percentage noise values were mapped to the interface 
as a difference between two cue magnitude images (i.e., image 1 and image 2) that were 
animated.  For example, a 30% noise value was represented by the addition of 30% area to 
the image 2, making it 30% larger than image 1.  When it was animated, the sensation of 
pulsing was seen.  When a cue was perfectly reliable, it did not pulse (there was only one 
image). 
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• (4) No Reliability Information.  Cue magnitude was presented to the subjects in numeric or 
graphic format in this condition; no information about reliability was given to the subjects.  
Here, the feed-forward information about reliability was absent from the judgment interface. 

Figure 1 illustrates an example of the judgment interface used for the graphic condition showing 
the cue magnitude (black features) superimposed over a noise graphic (gray features), the 
difference of which informs participants of the diagnostic value of the cue.  Here, the aggregate 
reliability computation for this set of cue features reflects a medium-R reliability level. 

 
Enter Estimated Link-Up Time

OK Cancel

Terrain Complexity Stealth Level Concealment Level Visibility 

 
Figure 1.  Static-graphic judgment interface. 

2.6 Procedure 

2.6.1 Training 

Each participant underwent two days of intensive navigation task training, beginning at 8:00 in 
the morning.  Each day of training consisted of a 5-hour block of time during which participants 
learned the judgment task.  After each hour of training, participants were given a 15-minute 
break.  

We conducted training for the navigation task by providing immediate feedback about the 
accuracy (outcome) of each judgment of navigation time within each reliability level (i.e., high-R, 
med-R, low-R).  Outcome feedback consisted of the true navigation time value generated from the 
criterion model (navigation rule).  We used cognitive feedback during training by encouraging the 
participants to discuss their judgment strategies with experimenters during the training process 
(Balzer et al., 1989).  This had the effect of assisting the participants with developing an accurate 
organizing policy for producing criterion judgments.  The cognitive feedback approach was also 
used to provide information to participants about the reliability of the cue information.  In this 
case, experimenters discussed with each participant the idea of how noise might affect their ability 
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to produce accurate judgments.  In this way, participants were able to develop a conceptual sense 
for how cue reliability affected the judgment process, even though no other systematic reliability 
feedback was used during training other than what was presented with the judgment display 
interface.  

During this training phase, each participant made navigation time estimates in the three infor-
mation reliability conditions and across the information reliability presentation formats.  During 
training, participants were told when reliability conditions were being changed.  However, 
participants were never given specific quantitative information about the parameters of the 
criterion model.  Participants were required to discover these parameters through trial-and-error 
judgments using outcome and cognitive feedback to help guide the manner in which they used the 
cue information.  Participants had to modify their judgment protocols to incorporate changes in the 
reliability of navigation information.  Thus, the judgment task required participants to develop 
strategies for weighting and integrating the cue information during different task reliability 
circumstances.  The trial-and-error approach used here in teaching participants to discover how to 
make complex judgments simulates the manner in which many real-world complex judgment tasks 
are learned (for review, see Brehmer & Joyce, 1988).  

2.6.2 Training Criterion 

The training criterion was a Pearson correlation between true criterion values and judgments of 
navigation time equal to 90% of overall task validity.  Task validity was computed as the squared 
multiple correlation between cues and criterion values.  Participants were required to achieve 
90% accuracy of the uppermost predictability of the true criterion in three consecutive 40-case 
trials.  All 35 participants were able to meet this criterion within the 10 training hours allotted 
over the course of two training days.  The training criterion ensured that participants had 
developed a set of organizing rules (policies) for judging navigation time during the various 
judgment conditions, which was similar, in the statistical sense, to the criterion model producing 
the true navigation values.  

2.6.3 Experiment 

All experimental sessions were conducted at the same time of day that training was administered.  
The experiment began the day after each participant was fully trained.  Participants were presented 
with warm-up judgments and outcome feedback in an effort to help get them back on task.  During 
the experiment, cue magnitude and cue noise were the only information sources available to the 
participants for making judgments.  In order to simulate a true navigation task where the quality of 
judgments is not immediately known, outcome and cognitive feedback were no longer available.  

During an experimental session, a single trained participant performed a subject-paced block of 
40 judgments during each cue reliability and reliability presentation condition combination.  
Each participant performed all 12 conditions during each experimental session.  After 6 of the 12 
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conditions were completed, each participant was given a 15-minute break.  The remaining six 
conditions were then performed.  The experiment took an average of 2 hours 15 minutes to 
complete.  The participants received the conditions in a counterbalanced format in order to 
control for order effects.  A statistical test for main effects attributable to the position of experi-
mental conditions was not significant (thus, no order effects were seen), nor was a gender effect 
observed in the data.   
 

3. Results 

A lens model analysis of participant judgments was conducted.  The lens model provides a metho-
dological framework that incorporates the probabilistic structure of human decision ecologies and 
thus provides the means for modeling the relationship between a judge and criterion in a multi-cue 
task environment (for review, see Brehmer & Joyce, 1988; Cooksey, 1996; Hammond, 1996).  
Figure 2 shows the elements of the lens model, which can be mathematically characterized if the 
relationship among the components of the model and judgment task performance is defined.  
Tucker (1964) described it as follows: 

 ra = G*Rs*Re + C[(1 - Rs2) (1 - Re2)].5 (6) 

The correlational performance that an individual achieves (i.e., achievement index) ra, is a 
function of four distinct components:  the linear multiple correlation between the cue values and 
the criterion, Re, (environmental predictability); the linear multiple correlation between the cue 
values and an individual’s judgments of the criterion, Rs, (consistency index); the extent to 
which the linear model of the individual judge correlates with the linear model of the criterion, 
G, (matching index); and the extent to which the residual variance in the model of the individual 
correlates with the residual variance in the model of the criterion, designated C.  Residual 
variance was negligible in this study, so the C index was not included in the analysis.  A lens 
model representation of the judgment task in the current study is shown in figure 2.  
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Figure 2.  Lens model showing (a) the cue validities (re1-4) between cues T1-T4 and criterion values (true world 
state), (b) cue use coefficients (rs1-4) between cues D1-D4 and judgment values (judged world state), 
and (c) the reliability weights (rtd) defining the fidelity of judged cues for representing criterion cues.  

3.1 Lens Model Analysis 

Graphic summaries of mean lens model indices for each of the reliability conditions across each 
reliability presentation format are shown in figures 3 through 5.  Univariate 3 x 4 repeated 
measures factorial ANOVAs with three levels of cue reliability crossed with four levels of 
reliability presentation format were used as the analytical framework for the lens model 
performance indices.  

3.1.1 Achievement 

Achievement index scores, ra, underwent Fisher z transformation and were then back transformed 
to Pearson correlations.  Mean achievement index scores indicated (a) significant cue reliability 
main effect F (2, 68) = 12.03, p < 0.001; (b) significant reliability presentation main effect F (3, 
102) = 14.07, p < 0.001; and (c) significant interaction effect F (6, 204) = 6.18, p < 0.001.  
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Figure 3.  Achievement across display and reliability conditions. 

3.1.2 Consistency 

Mean consistency (Rs) scores indicated that there was (a) significant cue reliability main effect  
F (2, 68) = 14.11, p < 0.001, (b) significant reliability presentation main effect F (3, 102) = 3.89, 
p < 0.01 and (c) significant interaction effect F (6, 204) = 5.13, p < 0.001.  

       Judgment Achievement (ra)  
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Figure 4.  Consistency across display and reliability conditions. 

3.1.3 Matching 

Mean matching (G) scores indicate that there was a (a) significant cue reliability main effect  
F (2, 68) = 6.33, p < 0.001, (b) significant reliability presentation main effect F (3, 102) = 9.50,  
p < 0.001 and (c) significant interaction effect F (6, 204) = 2.66, p < 0.05. 

     Judgment Consistency (Rs) 
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Figure 5.  Matching across display and reliability conditions. 

3.1.4 Judgment Response Time 

The rate of judgment performance was used as a behavioral index of cognitive activity occurring  
in response to different experimental manipulations.  The mean number of minutes necessary to 
complete the 40 judgment cases per participant for each condition was computed.  The results of 
the 3 x 4 ANOVA indicate that statistically significant main effects for Reliability F (2, 68) = 4.39, 
p < 0.001 and for Display format F (3, 102) = 15.29, p < 0.001 were seen.  Statistically significant 
interaction was also observed for response time F (6, 204) = 2.15, p < 0.05. 

 Judgment Matching (G) 
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3.2 Parsing Factorial Interactions 

3.2.1 Achievement and Consistency 

Bonferroni-corrected (p < .05) single-degree-of-freedom (DOF) contrasts were performed on the 
four display formats at each level of reliability compared to a simple main-effects analysis and 
are displayed in table 1.  Significant differences for achievement (ra) and consistency (Rs) were 
found across reliability presentation formats.  Pair-wise tests for the high-R condition were 
significant and graphic, animated, and numeric reliability presentation formats were associated 
with the highest achievement and consistency scores, while the no-information format produced 
the lowest achievement (see figure 3 for an illustration).  Differences were also found among the 
med-R conditions, with the graphic reliability presentation format associated with the highest 
achievement and consistency scores, and the other formats showing no statistical differences in 
achievement.  Finally, differences were found in the low-R conditions.  In this case, the animated 
reliability presentation format was associated with the highest achievement scores, while the 
animated, graphic, and numeric scores all produced the highest consistency values.  

Table 1.  Bonferroni-adjusted (p <.05) simple effects comparisons of display format during high-R, 
medium-R, and low-R task reliability conditions. 

Cognition High R Medium R Low R 

Achievement (ra) G, A, N > No* G > A, N, No A > G, N > No 
Consistency (Rs) G, A, N > No G > A, N, No A, G, N > No 
Matching (G) ------------** -------------- G, A, N > No 
Response time -------------- A > G, N, No N > A, G, No 

         *G:  graphic format; A:  animated; N:  numeric; No:  no feed-forward information 
          **-------------- No statistical differences between formats 

3.2.2 Matching 

The simple main effect analysis identified the low-R reliability condition as the source of 
interaction for matching (G) seen in table 1.  Single-DOF tests indicated that the graphic, 
animated, and numeric displays had higher matching values than the no-feed-forward display 
format. 

3.2.3 Judgment Response Time 

The simple main effect analysis of mean judgment response times showed that significant 
differences for display formats were seen within and across the reliability manipulation and are 
presented in table 1.  Figure 6 provides an illustration of these differences.  Although no 
differences were found in response times during the high-R condition, the animated format had 
the longest response time during med-R, and the numeric format produced the longest response 
time during the low-R condition.  
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Figure 6.  Judgment rate across display and reliability conditions. 

3.3 Relative Importance of Cues 

A descriptive assessment of the importance participants placed on various cues in generating 
their judgment was performed for each reliability condition across the four presentation formats.  
We generated bar graphs by averaging the decision policies of the participants within a reliability 
condition and across presentation formats.  This aggregation process produced an averaged 
decision rule, which simply reflected a set of mean regression weights for each reliability 
condition and presentation format.  Figure 7 indicates that during high-R conditions, participants 
saw the terrain cue as being the most diagnostic of navigation time with the concealment cue as 
least diagnostic across the displays presenting feed-forward information.  This is consistent in its 
correspondence with the regression weights derived when true navigation time scores were 
regressed on the cue values.  Further, cue use by participants was monotonic with respect to the 
cue validities in the criterion model for all feed-forward representations.  During performance 
within the high-R condition, participants correctly rank ordered the cues in terms of their 
importance for predicting criterion scores, regardless of the display format.  Thus, cue use by 
participants matched the linear model of the criterion. 

    Judgment Rate Index 
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Cue use duirng med-R appeared to display a greater average deviation from the criterion model 
than cue use during high-R.  Figure 7 shows that cue use during med-R remained relatively 
monotonic across the first three reliability presentation conditions, with the terrain cue perceived 
as most diagnostic and the concealment and visibility cues as very similar in diagnosticity.  
However, a large change in cue usage is exhibited in the no-reliability information presentation 
condition.  Finally, figure 7 displays a rather dramatic cue inversion during low-R.  The least 
important cue (concealment) in statistically maximizing successful judgments of navigation time 
was weighted most, on average, by the participants across all four reliability presentation 
formats.  
 

4. Discussion 

Achievement performance of the judgment task displayed effects attributable to the information 
reliability of the task environment and the representational format in which cue unreliability or 
noise was communicated to the participants.  In general, as the cues became less reliable, 
navigation time estimates became less accurate.  This finding replicates many studies examining 
the effects of cue reliability on judgment (Brehmer, 1970; Doherty & Sullivan, 1989; York, 
Doherty, & Kamouri, 1987).  Reliability feed-forward information, on average, facilitated 
judgment task performance when compared to the no-reliability feed-forward condition.  The 
exception to this finding was the performance during low-R when participants inaccurately gave 
the concealment cue a large weight, treating it as a highly diagnostic information source when it 
actually was not.  Rather than minimizing the concealment cue in link-up judgments, the 
participants, on average, maximized the cue in their judgments.  

The graphic, animated, and numeric feed-forward reliability formats appeared equal in communi-
cating the reliability of cues during high-R, while the graphic format appeared superior to all 
others in the med-R condition.  Finally, the animated iconic format appeared to support judgment 
achievement through higher consistency scores better than other formats during low-R.  Finally, 
the graphic iconic format appeared to produce the highest matching index scores during the low-R 
performance condition.   
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Figure 7.  Use pattern duirng high, medium, and low reliability  

conditions and across reliability information presentation  
formats with the criterion model generated from “true  
navigation” values regressed on displayed cue values. 



 

21 

4.1 Cognitive Control in Task Execution 

Equation 7 shows that judgment achievement (ra) is a function of the participant’s consistency 
(Rs), the environmental predictability (Re), matching (G), and configural (nonlinear) residual 
indices of the lens model.  Since the present study failed to yield a significant residual variance 
index (C) (by creating a strictly linear criterion model with no nonlinear components and noting  
an absence of nonlinear behavior in the judgment model side), the lens model equation simplified 
from 
 ra = G*Rs*Re + C[(1 - Rs2) (1 - Re2)]5 (7) 

to 
 ra = G*Rs*R . (8) 

Judgment consistency refers to the reliability of a particular decision maker when s/he is executing 
similar decisions.  That is, the consistency of his or her decision rules (e.g., cue weights) is 
measured by the predictability of judgments from the policy generated through least squares 
regression of judgments on cues.  The difference between observed judgments and judgments 
predicted by the perfect application of one’s decision policy represents decrements in consistency.  
Judgment consistency decrements have been viewed in the past as impairment in the ability to 
control the execution of a judgment policy, and thus this measure is often referred to as the control 
of knowledge index (Hammond, 1996; Cooksey; 1996; Hammond & Summers, 1972; Hammond & 
Wascoe, 1980).  Hammond and Summers (1972) have argued that controlling knowledge execution 
can be conceptually and statistically differentiated from a decision maker’s overall task knowledge 
state.  From a conceptual viewpoint, one may intellectually understand the necessary requirements 
for task performance, yet be unable to actively control the application of that knowledge in task 
performance.  These authors have used examples of executing complex motor skills in an effort to 
illustrate the conceptual difference between task knowledge and the implementation of that 
knowledge.  For example, an individual may have a very good feel for what it takes (intellectually) 
to shoot a “free throw” in basketball (e.g., positioning oneself correctly, determining distance to 
basket, determining optimal ball trajectory to basket, determining force applied to the shot, 
understanding the importance in manifesting fluid upper body motion and fluid finishing stroke, 
etc.).  However, being able to successfully integrate and execute these task dimensions may be quite 
difficult.  Thus, recognizing and understanding the parameters of knowledge acquisition is not 
enough to guarantee successful knowledge application.  One must also demonstrate cognitive 
control over the execution of task specific information.  In addition, apart from the issue of skill in 
execution, there can be inconsistency in policy execution in all types of cognitive decision making.  
Individuals and organizations are often accused of biased decision making, that is, inconsistency in 
executing a particular policy across situations.   

The data in the present study indicate that changes in information reliability affected the ability 
of judges to control the execution of their expertise in making navigation link-up time estimates.  
With the exception of certain aspects of the low-R condition, lower reliability translated into 
lower cognitive control.  Reductions in cognitive control have been a general finding of 
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judgment researchers, particularly in highly probabilistic settings (Hammond, 1981, 1996).  
However, lower cognitive control does not necessarily mean that participants have forgotten how 
to use the information—only that their ability to control execution of their judgment protocols 
has been altered.  

4.2 Task Knowledge State 

The judgment-matching index has been viewed as reflecting the participant’s understanding of 
the properties underlying accurate task performance from the acquisition of knowledge (Brehmer 
& Joyce, 1988; Hammond, 1981; Hammond, Rohrbaugh, Mumpower & Adelman, 1977; 
Hammond & Summers, 1972).  It is defined as the correlation between the linear model of the 
environment (the predicted criterion) and the linear model of the judge (the predicted judgment) 
(G).  The matching index measures the extent to which participants can distinguish among the 
cues on the basis of their diagnostic value in predicting the criterion variable.  The substantive 
and statistical distinction between cognitive control and task knowledge is best understood if we 
note that one can apply a highly consistent judgment protocol that is not empirically valid.  For 
example, one may demonstrate a perfect application of a decision policy when no deviation 
exists between observed and predicted judgments.  However, in this case, overall task accuracy 
(i.e., achievement) would be low because one is using the wrong policy for criterion judgments.    

Figure 5 shows that the level of matching between participants’ use of judgment information and 
the linear characteristics of the empirical criterion model (G) remained relatively high across the 
feed-forward formats during high-R and med-R conditions, and table 1 indicates the absence of 
statistical differences among the display formats.  Within the lens model context, a high 
matching index means that a participant’s knowledge of the task matches with the actual task 
system (i.e., the model derived from the regression of the true criterion values on the cues).  
Since training ensured that participants began the experiment knowing how to perform the task 
during each reliability-feed-forward condition combination, it becomes difficult to argue on the 
basis of the matching index for high-R and med-R that reductions in judgment achievement (ra) 
seen in this study were merely a function of participants forgetting how to perform the task.  For 
example, the loss of task knowledge often manifests the application of guessing strategies, which 
produce very low matching index scores.  Because the matching indices remained high during 
these conditions, the lack of consistency in the application of decision policies was primarily 
responsible for reductions in achievement.  There are numerous examples of situations in which 
an individual exhibits a high degree of understanding for the properties of a task and yet is 
unable to consistently apply the knowledge necessary to perform the task (see Hammond & 
Summers, 1972).  

During performance in the low-R group, there were dramatic changes in judgment behavior.  
Here, the achievement (ra) decrement was not associated with cognitive control measured by the 
consistency (Rs) index but a decrement in task knowledge that was measured by the matching 
index (G).  Figure 4 illustrates that the consistency index remained relatively high for the 
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reliability feedforward groups in low-R, while figure 5 illustrates the large decrement in 
matching (G) values for low-R performance.  

Examining the cue use profiles in figure 7 provides some insight to this outcome.  Although the 
concealment cue was predictive, on average, of navigation time in the criterion model it was 
viewed as highly diagnostic by the participants during low-R.  Their behavior in using the 
concealment cue as though it were most diagnostic of navigation time led to less successful 
judgments.  This effect is puzzling because during low-R performance, participants’ cue use 
profiles tended to correctly discount unreliable information in their judgments.  Thus, partici-
pants appeared to be aware of changes in the reliabilities compared to the feed-forward display 
for these cues and were able to incorporate that knowledge in their judgment policies.  Here, 
concealment was more reliable but less important than other cues, and the participants were 
unable to discern this fact during low-R performance.  It is very interesting and operationally 
relevant that participants would naturally place more importance on certain information even if it 
is not as important as the unreliable information.    

This finding is difficult to dismiss as an experimental artifact because of its pervasive nature 
across the low-R feed-forward presentation formats.  It is possible that in the low-R condition, 
the contrast between those cues presented as unreliable (i.e., large background graphics, large 
pulse envelope, etc.) may have made the concealment cue appear more valid then it was.  Why 
the participants tended to focus on the concealment cue as a robust diagnostic source of 
information is difficult to explain.  

However, this outcome may also reflect, in part, the general finding that people rarely achieve 
the level of performance found in statistical integration models (Kahneman, Slovic, & Tversky, 
1982; Slovic, Fischoff, & Lichtenstein, 1977).  In order to reduce the mental demands of task 
performance, people often execute heuristics and other resource conservation strategies for 
processing complex information instead of using optimizing strategies.  It may simply have been 
easiest for the participants to use the information provided by the concealment cue and not have 
to encode or process reliability at all.  

4.3 Iconic Feed-Forward Display and Cognition 

During high-R performance, the graphic, animated, and numeric feed-forward formats demon-
strated high achievement (ra) scores and are illustrated in figure 3.  Further, figure 7 demonstrates 
that the cue use profiles matched the weights in the criterion model during high-R.  In contrast, 
judgment achievement during the med-R condition appeared highest for the graphic format, while 
the animated display appeared superior during low-R performance.  

When the task was very predictable (high-R), any format could be used effectively and easily.  
Although it was clear in the analysis and illustrated in figure 3 that in comparison to the no-feed-
forward information group, even small noise information values were useful to participants.  
However, the manner in which they were displayed did not matter.  
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There are a number of explanations for these findings that emerge from judgment research.  The 
high reliability of the cues created what might be argued as a well-defined task, which may have 
led participants to apply an analytical organizing principle during performance during high-R 
(Hammond et al., 1987).  Since task reliability was high in the high-R condition, participants 
could focus primarily on cue magnitude.  Thus, feed-forward information allowed subjects to 
quickly identify that the cues were reliable and they could primarily attend to cue magnitudes.  
During high-R performance, participants demonstrated a capacity to execute precise judgment 
protocols as seen in the achievement and consistency index scores for this condition. 

Some insight into the findings can be derived, in part, from feedback studies of multi-cue 
judgment performance.  There has been substantial research suggesting that loss of control in the 
execution of multi-cue knowledge can be attenuated by feedback (Balzer et al., 1989; Brehmer, 
1970; Doherty & Sullivan, 1989; York et al., 1987).  Further, the amount and nature of feedback 
needed to maintain control become less demanding as the task becomes more analytical (see 
Hammond, 1990; Brehmer, 1978; Searcy, 1994).  When the rules governing cue usage are fairly 
explicit (e.g., high reliability conditions), very little feedback is needed in order to stay on track 
or maintain control in the execution of knowledge.   

However, as the task becomes more implicit because of higher levels of uncertainty produced by 
the addition of noise to the criterion model, feedback requirements become more demanding in 
order to be effective.  This is, in part, why outcome feedback alone is usually insufficient in 
promoting task learning in multi-cue probability learning experiments that incorporate moderate 
to high amounts of task uncertainty (Balzer et al., 1989; Brehmer & Joyce, 1988).  When tasks 
are well defined and certain, feedback is less important in order to promote or maintain task 
performance.  Similarly, when information is reliable, representational properties of the feed-
forward information formats are less important, and less support is necessary. 

The significant main effect for reliability condition on judgment rate indicates that reliability, at 
least in part, affected the effort necessary to execute judgments.  Figure 6 shows that on average, 
significantly more time was needed to complete the 40 case trials during the high-R condition 
than the other reliability conditions.  The increased response times are a consistent feature in the 
application of deliberate serial processing of decision information (Kahneman & Tversky, 1982) 
and the application of a mental calculus to cues (Mahan, 1991; 1992; 1994; Hammond, 1990, 
1996).  

However, as the task’s reliability factor changed, the participants began to selectively respond to 
the joint dependence of reliability and magnitude.  During med-R, the participants seemed to use 
a more intuitive approach at organizing the information.  They could not simply decompose the 
task into computing link-up times from cue magnitude information alone but were required to 
adopt a more general and perhaps holistic principle for aggregating the magnitude and reliability 
information.  
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During the med-R condition, reliability information had a greater impact on the diagnostic 
weights assigned to cues in the criterion model than during high-R.  As a result, during med-R, 
essentially two features of the task had to be closely followed:  cue magnitude and cue noise.  
Since cue diagnosticity was a function of both magnitude and noise, the graphic depiction may 
have configured the information in a manner that produced a representation that could be 
perceptually measured.  This perceptual measurement would tend to induce an intuitive mode of 
organization and would best match the med-R reliability structure of the task.  Hammond (1980) 
and others (see Garner, 1974; Hammond et al., 1987; Kubovy & Pomerantz, 1981) have noted 
that the reliance on perceptually measured information sources induces intuitive or holistic 
responses to information dimensions by people.  

The reduction in response times during the med-R condition in comparison to those response 
times in the high-R condition seems to provide some evidence for an intuitive mode of informa-
tion organization.  The implication here is that the graphic feed-forward display produced the 
most useful mapping of task features, which called for intuitive-based judgments because of the 
increased noise in the task.  In this case, presenting both cue magnitude and noise as superim-
posed images required participants to attend to, extract, and factor cue and noise values using 
perceptual measurement, which tends to be rapid and approximate in nature.  While in the high-R 
condition participants could dismiss reliability as an important feature of the task, in med-R, the 
task required factoring both task components.  Perceptual processing tends to be parallel in 
nature, and parallel processing has been viewed as a hallmark feature of holistic and intuitive 
cognitive activity (compare Hammond, 1980; 1996; Kahneman, Slovic & Tversky, 1982; 
Kahneman & Tversky, 1979; Kahneman & Tversky, 1982; Simon, 1978; von Winterfeldt & 
Edwards, 1986).  

The primary decrement observed during med-R was one of exhibiting cognitive control over the 
execution of judgment policies.  The reduction in control (measured by the consistency index Rs) 
that occurs in response to task performance during uncertain conditions has been observed in past 
research (Brehmer & Joyce, 1988; Hamm, 1988; Hammond, 1996; Hammond et al., 1987).  The 
loss in cognitive control is believed to be a manifestation of intuitive cognition.  The absence of an 
explicit organizing principle yields judgment protocols that randomly drift around parameter 
values of some optimized (normative) policy for integrating information (see Hammond, 1996,  
for review).  However, this random drift does not necessarily compromise the overall accuracy of 
judgments.  Within real decision environments, most information sources are significantly corre-
lated, which of course means that the departure of a decision maker’s policy cue weights from the 
ecological weights in a normative (criterion) model has far less impact on judgments.  That is, the 
rank order diagnostic value of cue usage by human judges is often identical to the rank ordering of 
cues in the criterion model (i.e., high matching index scores), even though judgment-to-judgment 
variability exists in the weights applied to cues (i.e., drift).  During these conditions, correlations 
among judgments and true values from the criterion model are typically high.   
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The matching data depicted in figure 5 clearly show that the knowledge of the judgment task was 
quite high across all feed-forward conditions for med-R performance.  Once again, it was not the 
case of participants forgetting the diagnostic weight to be given the cues for predicting the 
criterion but a decline in the ability to consistently weight (i.e., factor) magnitude and reliability 
and integrate the diagnostic information from all cues in generating an overall judgment of link-
up times.  

Animated and numeric formats failed to support judgment achievement during med-R performance 
at the level observed in the graphic format.  The explanations for these findings may be linked, at 
least in part, to the failure of these displays to accurately map the task.  The uncertain (noisy) 
quality of the med-R task called for participants to respond to the joint reliability-magnitude 
elements compared to an intuitive approach to judgments of the criterion.  However, this congruent 
cognitive activity did not appear to be supported in the representational character of the animated 
and numeric displays.  

During med-R performance, the numeric display may have communicated a sense of precision to 
participants by 1) presenting the noise as a precise numeric quantity, and 2) separating this 
information from the manner in which cue magnitude was displayed.  The impact of both these 
display features may have induced a form of analysis and the decomposition of the information 
sources into orthogonal parts.  However, the criterion model called for configural (conditional) 
processing of reliability and magnitude of cues.  Thus, numeric information may have induced a 
mode of cognition that was incongruent with the properties of the task in terms of the capacity 
for users to generate diagnostic assessments of the reliability and magnitude component of the 
cues.  This observation is partially supported by the longer response times evident for the 
numeric display versus the graphic display in the med-R condition (see figure 6).  The longer 
response times suggest that an analytical decomposition of the information occurred during 
judgment.  Hammond (1980) has noted that an analysis-inducing feature of a task is the use of 
objective (numeric) quantities for cue values and that objective information tends to produce an 
analytical response in decision makers.  

The animated display may have suffered similar consequences as the numeric display but for 
different reasons.  A primary feature of the display was communicating reliability through 
animation.  This may have required participants to analyze the size of the pulse envelope.  
Although the display required perceptual measurement, the differences in pulse envelopes among 
cues required some form of analysis for encoding.  A related interpretation may be associated 
with the notion of salience.  Within the med-R condition, the terrain cue had significant dynamic 
changes occurring in reliability over those reliabilities of the other cues, which meant that 
animation was much more visible for the terrain cue.  Animation in the med-R condition may 
have generated a high level of salience for the unreliable cue leading to a selective focused 
attention aimed at encoding the animated information.  This selective attention generated through 
the level of cue salience may have overcome any intuitive inducing features of the graphic 
components of the animated display, producing a shift in cognitive mode toward analysis.  Once 
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again, the longer response time data for the animated display in med-R seems to provide some 
evidence for the execution of an analytical strategy.  The graphic display on the other hand, was 
more successful in med-R conditions, presumably because it more closely mapped the configural 
properties of the task and communicated these properties to the participants.  The longer 
response times for the numeric and animated displays during med-R are consistent with a more 
analytically oriented organizing principle.  

The average response characteristics of participants changed when they performed the task 
during conditions of low reliability (low-R).  Figure 4 indicates that during low-R performance, 
response consistency remained relatively high over the graphic, animated, and numeric feed-
forward conditions.  In contrast, the low-R matching index scores appeared much more variable 
during this condition over the display formats (see figure 5).  When the cues became least 
reliable, the participants’ judgments, although fairly consistent, became fairly wrong.  Here, 
judgment consistency was high, but validity was low.  Thus, overall achievement (ra) was 
significantly lower for the low-R condition because of the low matching (G) values in the 
judgment protocols (see figure 5).  

During low-R performance, the animated display seemed to be the most effective of the formats 
in supporting the judgment process in terms of overall judgment achievement.  The relatively 
higher achievement values for the animated display were largely attributable to the fact that 
during the animated condition, participants were able to generate the highest matching index 
values (G) of any low-R display format (see figure 5).  Why the animated display was more 
useful to the participants during low-R when it seemed to offer poorer support during the med-R 
is difficult to understand.  In some sense, one might expect that low levels of reliability would 
favor a more spatial/temporal display in order to take advantage of perceptual measurement.  The 
success of the spatial representation approach was seen in med-R when the graphic reliability 
display provided the superior support for judgment.  Yet, when one examines the response data, 
it seems that participants appeared to use the animated display in a manner that suggests 
perceptual encoding leading to more of an intuitive principle applied to the decision task.  The 
finding that during med-R the animated display induced a more deliberate analysis and during 
low-R a more intuitive strategy is unexpected.  One might speculate that during the low-R 
condition, the animated display did not possess the same degree of salience for the participants 
that it did in the med-R condition.  Since two of the four cues had large dynamically changing 
reliability values in low-R as opposed to only a single cue (terrain) possessing the large 
reliability variance in med-R, the judges could not simply focus on the terrain cue.  Instead, they 
had to distribute their attention over terrain and stealth cues in order to achieve more accurate 
judgments.  During low-R, participants had to process significantly more information and this 
may have changed the manner in which judges were encoding the animation, from analyzing 
when only a single cue had the large reliability variance to intuitive processing when two cues 
had a large reliability variance. 
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4.4 Summary 

The study found that changes in the reliability of the task environment were associated with 
decrements in performance of a multi-cue judgment task.  The performance decrement during 
high and medium task reliability was primarily a function of the reduction in the participant’s 
response consistency (cognitive control) in executing a learned judgment policy for integrating 
criterion information.  During low task reliability, the performance decrement appeared in the 
form of reductions in the participant’s knowledge of the task since a low diagnostic information 
source was wrongly weighted as highly informative of the criterion state.  

Although it was clear that the reliability feed-forward information from the icon displays 
supported the judgment process as a main effect, the display format did not appear to matter in 
judgments produced during high-R conditions.  Moreover, response time data provide some 
limited support to the notion that participants used analytical computation during high-R to render 
judgments.  In contrast, format did seem to matter during the med-R condition with the graphic 
iconic format associated with superior judgment achievement scores (see figure 3).  This finding 
was presumably attributable to this format successfully mapping the configural properties of the 
task through a spatial representation that participants were able to effectively understand and use.  
The reduced response time for the graphic display suggests that participants used an intuitive-
anchored organizing principle during judgment.  Finally, the animated icon display generated the 
greatest accuracy of the feed-forward display formats during low-R performance.  

Clearly, a litany of important limitations exists in this study, which prevents any wholesale 
inferences to be drawn with regard to real judgment tasks employing iconic representation feed-
forward applications.  First, the present study used cues for the navigation task that were generated 
in a manner that produced very low cue inter-correlations.  In addition, the information sources 
were represented as separate and distinct objects.  This was done in order to simplify participant 
training on the judgment task and facilitate the evaluation of experimental manipulations that were 
aimed at the level of each cue reliability and magnitude elements used in judgments.  Clearly, the 
pattern of results in much more ecological tasks, which employ correlated cues and multi-
dimensional object formats, might be quite different.  

Secondly, most inferences of cognitive mode in the present study tend to be circular.  Although we 
stipulated that a rate measure of processing provides some independent assessment of an intuitive 
or analytical judgment state (i.e., organizing principle), this measure in itself is not nearly suffi-
cient to define a mode independent that of the judgment indices themselves.  As a result, only 
limited conclusions can be directed at particular cognitive modes during performance.  Neverthe-
less, it was possible to reasonably differentiate modes of cognition based on data profiles, at least 
in part.  For example, the possibility that participants resorted to a guessing strategy as opposed to 
executing an intuitive organizing principle was determined in relation to the matching (G) index 
values.  A guessing strategy would not only generate poor knowledge control values (i.e., 
consistency) but poor task knowledge values as well (i.e., matching).  In contrast, although an 
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intuitive mode of cognition often suffers from lower control, matching values are often reasonably 
high.   

Thirdly, it is presumed that information fidelity can be known and brought to bear on judgment 
problems within a variety of applied contexts.  This assumption is equivalent to saying, in part, that 
valid procedures for obtaining real-time statistical assessments of reliability and/or uncertainty are 
available for use.  Clearly, in many cases, this is not true for a number of reasons.  A theoretical 
measurement problem for developing real-time probabilistic decision support systems lies in the 
manner in which information reliability and criterion reliability are modeled.  Traditional 
measurement models cannot always address measurement error associated with the predictor 
variables or the notion of correlated errors that would be manifested in a real-time application of 
the display approach examined in this study (Lance, Baxter, & Mahan, in press).  Reliability 
information generated from archival data, expert subjective estimates, or reports may partially fill 
this void until better procedures are developed for producing this information.  Finally, recent 
work in the areas of virtual worlds and comprehensive simulations offer a method to study valid 
representations of complex decision environments that will support the detailed modeling of 
information properties (Elliott, Neville, Dalrymple, & Tower, 1997; Schiflett et al., 2004). 

Future research might be directed at resolving some of the questions raised in this study.  
Representing information reliability as a specific property of an icon object display may help to 
create efficient and usable decision support devices of the kind described here.  An additional 
research endeavor may include alternate representational schemes that use multi-modal 
approaches for displaying cue reliability information such as tactile and auditory information 
delivery, which, of course, will require significant changes in the methodology used in the 
present study.  Finally, using measures that can independently validate the type of organizing 
principle being executed by decision makers will help develop iconic representations that induce 
appropriate and task-congruent cognitive processes in decision makers.  
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